330 research outputs found

    Mitigating Safety Concerns and Profit/Production Losses for Chemical Process Control Systems Under Cyberattacks via Design/Control Methods

    Get PDF
    One of the challenges for chemical processes today, from a safety and profit standpoint, is the potential that cyberattacks could be performed on components of process control systems. Safety issues could be catastrophic; however, because the nonlinear systems definition of a cyberattack has similarities to a nonlinear systems definition of faults, many processes have already been instrumented to handle various problematic input conditions. Also challenging is the question of how to design a system that is resilient to attacks attempting to impact the production volumes or profits of a company. In this work, we explore a process/equipment design framework for handling safety issues in the presence of cyberattacks (in the spirit of traditional HAZOP thinking), and present a method for bounding the profit/production loss which might be experienced by a plant under a cyberattack through the use of a sufficiently conservative operating strategy combined with the assumption that an attack detection method with characterizable time to detection is available

    Protein Misfolding as an Underlying Molecular Defect in Mucopolysaccharidosis III Type C

    Get PDF
    Mucopolysaccharidosis type IIIC or Sanfilippo syndrome type C (MPS IIIC, MIM #252930) is an autosomal recessive disorder caused by deficiency of the lysosomal membrane enzyme, heparan sulfate acetyl-CoA: α-glucosaminide N-acetyltransferase (HGSNAT, EC 2.3.1.78), which catalyses transmembrane acetylation of the terminal glucosamine residues of heparan sulfate prior to their hydrolysis by α-N-acetylglucosaminidase. Lysosomal storage of undegraded heparan sulfate in the cells of affected patients leads to neuronal death causing neurodegeneration and is accompanied by mild visceral and skeletal abnormalities, including coarse facies and joint stiffness. Surprisingly, the majority of MPS IIIC patients carrying missense mutations are as severely affected as those with splicing errors, frame shifts or nonsense mutations resulting in the complete absence of HGSNAT protein

    Impaired Hyperemic Response to Exercise Post Stroke

    Get PDF
    Individuals with chronic stroke have reduced perfusion of the paretic lower limb at rest; however, the hyperemic response to graded muscle contractions in this patient population has not been examined. This study quantified blood flow to the paretic and non-paretic lower limbs of subjects with chronic stroke after submaximal contractions of the knee extensor muscles and correlated those measures with limb function and activity. Ten subjects with chronic stroke and ten controls had blood flow through the superficial femoral artery quantified with ultrasonography before and immediately after 10 second contractions of the knee extensor muscles at 20, 40, 60, and 80% of the maximal voluntary contraction (MVC) of the test limb. Blood flow to the paretic and non-paretic limb of stroke subjects was significantly reduced at all load levels compared to control subjects even after normalization to lean muscle mass. Of variables measured, increased blood flow after an 80% MVC was the single best predictor of paretic limb strength, the symmetry of strength between the paretic and non-paretic limbs, coordination of the paretic limb, and physical activity. The impaired hemodynamic response to high intensity contractions was a better predictor of lower limb function than resting perfusion measures. Stroke-dependent weakness and atrophy of the paretic limb do not explain the reduced hyperemic response to muscle contraction alone as the response is similarly reduced in the non-paretic limb when compared to controls. These data may suggest a role for perfusion therapies to optimize rehabilitation post stroke

    Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats

    Get PDF
    This protocol describes the use of in vitro television microscopy to evaluate vascular function in isolated cerebral resistance arteries (and other vessels), and describes techniques for evaluating tissue perfusion using Laser Doppler Flowmetry (LDF) and microvessel density utilizing fluorescently labeled Griffonia simplicifolia (GS1) lectin. Current methods for studying isolated resistance arteries at transmural pressures encountered in vivo and in the absence of parenchymal cell influences provide a critical link between in vivo studies and information gained from molecular reductionist approaches that provide limited insight into integrative responses at the whole animal level. LDF and techniques to selectively identify arterioles and capillaries with fluorescently-labeled GS1 lectin provide practical solutions to enable investigators to extend the knowledge gained from studies of isolated resistance arteries. This paper describes the application of these techniques to gain fundamental knowledge of vascular physiology and pathology in the rat as a general experimental model, and in a variety of specialized genetically engineered designer rat strains that can provide important insight into the influence of specific genes on important vascular phenotypes. Utilizing these valuable experimental approaches in rat strains developed by selective breeding strategies and new technologies for producing gene knockout models in the rat, will expand the rigor of scientific premises developed in knockout mouse models and extend that knowledge to a more relevant animal model, with a well understood physiological background and suitability for physiological studies because of its larger size

    Sunfleck properties from time series of fluctuating light

    Get PDF
    Light in canopies is highly dynamic since the strength and composition of incoming radiation is determined by the wind and the Sun's trajectory and by canopy structure. For this highly dynamic environment, we mathematically defined sunflecks as periods of high irradiance relative to the background light environment. They can account for a large proportion of the light available for photosynthesis. Based on high-frequency irradiance measurements with a CCD array spectroradiometer, we investigated how the frequency of measurement affects what we define as sunflecks. Do different plant canopies produce sunflecks with different properties? How does the spectral composition and strength of irradiance in the shade vary during a sunfleck? Our results suggest that high-frequency measurements improved our description of light fluctuations and led to the detection of shorter, more frequent and intense sunflecks. We found that shorter wind-induced sunflecks contribute most of the irradiance attributable to sunflecks, contrary to previous reports from both forests and crops. Large variations in sunfleck properties related to canopy depth and species, including distinct spectral composition under shade and sunflecks, suggest that mapping canopy structural traits may help us model photosynthesis dynamically.Peer reviewe

    Two Weeks of Ischemic Conditioning Improves Walking Speed and Reduces Neuromuscular Fatigability in Chronic Stroke Survivors

    Get PDF
    This pilot study examined whether ischemic conditioning (IC), a noninvasive, cost-effective, and easy-to-administer intervention, could improve gait speed and paretic leg muscle function in stroke survivors. We hypothesized that 2 wk of IC training would increase self-selected walking speed, increase paretic muscle strength, and reduce neuromuscular fatigability in chronic stroke survivors. Twenty-two chronic stroke survivors received either IC or IC Sham on their paretic leg every other day for 2 wk (7 total sessions). IC involved 5-min bouts of ischemia, repeated five times, using a cuff inflated to 225 mmHg on the paretic thigh. For IC Sham, the cuff inflation pressure was 10 mmHg. Self-selected walking speed was assessed using the 10-m walk test, and paretic leg knee extensor strength and fatigability were assessed using a Biodex dynamometer. Self-selected walking speed increased in the IC group (0.86 ± 0.21 m/s pretest vs. 1.04 ± 0.22 m/s posttest, means ± SD; P\u3c 0.001) but not in the IC Sham group (0.92 ± 0.47 m/s pretest vs. 0.96 ± 0.46 m/s posttest; P= 0.25). Paretic leg maximum voluntary contractions were unchanged in both groups (103 ± 57 N·m pre-IC vs. 109 ± 65 N·m post-IC; 103 ± 59 N·m pre-IC Sham vs. 108 ± 67 N·m post-IC Sham; P = 0.81); however, participants in the IC group maintained a submaximal isometric contraction longer than participants in the IC Sham group (278 ± 163 s pre-IC vs. 496 ± 313 s post-IC, P = 0.004; 397 ± 203 s pre-IC Sham vs. 355 ± 195 s post-IC Sham; P = 0.46). The results from this pilot study thus indicate that IC training has the potential to improve walking speed and paretic muscle fatigue resistance poststroke

    Improving the quality of written information available at weekends in a paediatric hospital: the TRANSMIT sheet.

    Get PDF
    The clinical outcomes at weekends are worse than during the week in a hospital setting. There are many potential factors which influence this. High quality communication between the weekday teams and the on call weekend staff could help improve clinical outcomes at weekends, but there are no validated forms of communication that have been established in a paediatric hospital setting. The casenotes of all medical patients (n=119) were prospectively evaluated across all medical wards in a large paediatric hospital over three weekends, to establish the quality of information available to on call teams. Following introduction of structured documentation, known as a TRANSMIT (including Tasks, Respiratory, Anticipated problems, Nutrition, Sepsis, Medication, Intravenous access, Transfer/discharge) sheet, the audit was repeated (n=111). A qualitative survey of junior doctors using TRANSMIT was carried out after introduction. Prior to the introduction of the structured documentation (TRANSMIT sheet) an accurate problem list was present in 56% (67/119), and an adequate written management plan in 63% (75/119). Following introduction, an improvement in the notes was seen, with accurate problem lists in 82% (91/111) and an adequate plan in 76% (84/111). Improvements in the quantity and quality of information available to weekend on call medical staff were noted. The use of a structured documentation (TRANSMIT sheet) can improve the quality of written information available to on-call teams in a paediatric hospital setting. A retrospective qualitative assessment of junior doctors using TRANSMIT sheets showed an improvement in both the quantity and quality of information available to on call staff at weekends

    The benefits of informed management of sunlight in production greenhouses and polytunnels

    Get PDF
    Societal Impact Statement The effective management of light is beneficial for growers of plants in greenhouses, polytunnels and under cloches. The materials and structures used to construct these environments often create light-limited conditions for crops and change the spectral composition of sunlight they receive. Combining practical measures, drawn from knowledge of plant photobiology, allows growers to monitor, forecast and optimise conditions in their growing environment according to its geographical location and the crop grown. Improved management of light through these measures could be expected to improve food quality and yield, and potentially reduce use of energy, water and pesticides. Horticultural production in greenhouses and in polytunnels expands the viable geographic range of many crop species and extends their productive growing season. These semi-controlled growing environments buffer natural fluctuations in heat, cold and light and hold potential to improve food security with a low environmental footprint. Over the last decade, technological advances in cladding materials, smart filters, photo-electric cells for energy production and LED lighting have created opportunities to improve the light environment within these structures. In parallel, there have been large advances in plant photobiology, underpinned by progress in identifying the mechanisms of photomorphogenesis and photoprotection, mediated by plant photoreceptors and their interactions, across regions of the spectrum. However, there remains unexploited potential to synthesise and transfer knowledge from these fields to horticulture, particularly with respect to tailoring the use of sunlight to specific locations and production systems. Here, we systematically explain (1) the value of modelling and monitoring patterns of sunlight to allow for informed design of the growth environment; (2) the means of optimising light conditions through selection of materials and structures; (3) the requirements of different crop plants in terms of the amount and spectral composition of light that will benefit yield and food quality; (4) the potential to combine this knowledge for effective management of the sunlight; and, finally, (5) the additional benefits these actions may bring to growers and society at large, beyond the crops themselves, in terms of water use and energy efficiency.Peer reviewe

    The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    Get PDF
    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements

    Hyperoxia Causes Mitochondrial Fragmentation in Pulmonary Endothelial Cells by Increasing Expression of Pro-Fission Proteins

    Get PDF
    Objective—We explored mechanisms that alter mitochondrial structure and function in pulmonary endothelial cells (PEC) function after hyperoxia. Approach and Results—Mitochondrial structures of PECs exposed to hyperoxia or normoxia were visualized and mitochondrial fragmentation quantified. Expression of pro-fission or fusion proteins or autophagy-related proteins were assessed by Western blot. Mitochondrial oxidative state was determined using mito-roGFP. Tetramethylrhodamine methyl ester estimated mitochondrial polarization in treatment groups. The role of mitochondrially derived reactive oxygen species in mt-fragmentation was investigated with mito-TEMPOL and mitochondrial DNA (mtDNA) damage studied by using ENDO III (mt-tat-endonuclease III), a protein that repairs mDNA damage. Drp-1 (dynamin-related protein 1) was overexpressed or silenced to test the role of this protein in cell survival or transwell resistance. Hyperoxia increased fragmentation of PEC mitochondria in a time-dependent manner through 48 hours of exposure. Hyperoxic PECs exhibited increased phosphorylation of Drp-1 (serine 616), decreases in Mfn1 (mitofusion protein 1), but increases in OPA-1 (optic atrophy 1). Pro-autophagy proteins p62 (LC3 adapter–binding protein SQSTM1/p62), PINK-1 (PTEN-induced putative kinase 1), and LC3B (microtubule-associated protein 1A/1B-light chain 3) were increased. Returning cells to normoxia for 24 hours reversed the increased mt-fragmentation and changes in expression of pro-fission proteins. Hyperoxia-induced changes in mitochondrial structure or cell survival were mitigated by antioxidants mito-TEMPOL, Drp-1 silencing, or inhibition or protection by the mitochondrial endonuclease ENDO III. Hyperoxia induced oxidation and mitochondrial depolarization and impaired transwell resistance. Decrease in resistance was mitigated by mito-TEMPOL or ENDO III and reproduced by overexpression of Drp-1. Conclusions—Because hyperoxia evoked mt-fragmentation, cell survival and transwell resistance are prevented by ENDO III and mito-TEMPOL and Drp-1 silencing, and these data link hyperoxia-induced mt-DNA damage, Drp-1 expression, mt-fragmentation, and PEC dysfunction
    • …
    corecore